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Discrete and continuum models of nematic polymers 

M Warner and X J Wang 
CavendLh Laborato~~, Madingly Road, Cambridge. CB3 OHE, UK 
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AbstmI. Main chain polymer liquid aystals have k e n  modelled BS .yo- In m l i l y  
the slii7ne.s is not distributed in lhis manner-mds mnnsted to each other Ly 
spacem. We a m i n e  lhe limiu of this pmblem, that is worm and joint&-md models, U, 
see when each is applicable. Hairpins, found naturally in lhe worm pmblem, also ais1 
for jointed systems but their raling is quite differenl. 

1. I n t d U C t i O n  

Semi-flexible main chain polymer liquid crystals display isotropic, nematic and finally 
solid phases as temperature decreases. They consist of nematogenic rod elements con- 
nected by spacers of varying degrees of flexibility. Entering the nematic phase causes 
chains as a whole to become anisotropic (as seen by neutron scattering [l]), the de- 
gee of anisotropy of dimensions increasing more rapidly at temperatures lower than 
where the initial jump occurred (the nematicisotropic transition). This behaviour is 
easy to describe using a worm model of a chain [2-6]. A worm has a unit tangent 
vector u(s)  which means at each arc point s along its length the chain is inex- 
tensible. Changes in the tangent direction are penalized by an elastic bend energy 
(Iel = s," ds te(au/as)' where E is a bend constant, and the bend energy has been 
summed over all arc positions from 0 to the total length L of a chain. The possibility 
of bending has been attributed to all points of the chain not just localized at the 
spacers. We are concerned in this paper with (a) when is a continuum model a good 
representation of the underlying discrete polymer? and @) can one obtain hairpins 
in the discrete model? Hairpins, introduced by de Gennes [Z], are abrupt reversals 
of chain direction and prove to be significantly different in different models. The 
significance of the second question will emerge more fully when we discuss the first 
question. We shall also discuss another rather different, jointed model of nematic 
polymers due to Croxton [7-91 which also displays hairpins. 

2. The continuum (worm) limit 

Consider initially a set of discrete jointed rods to form a polymer (figure 1). The 
energy of such a polymer is 

U =  -CPQfz(cosei) t Ctq(ei+, -ei)'. (1) 
i 
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Figure L A Section of jointed-md chain with rods i - 1 ,  i ,  i +  1 and their angles marked. 
n e  difference 8, - 8i-1 determines the bend energy. n e  worm limil is sketched with 
the tangent vecmr U. a1 the arc p i n 1  s having angle S(s)  with m p t  to the director 
n. 

The first term is the nematic mean field energy, the order parameter is Q = 
(P2(cosO))  where Pz(z) = +zz- 5 is the second Legendre polynomial (appropriate 
to a quadrupolar system such as a nematic), p is a nematic coupling constant of a rod, 
and q is a bend elastic constant. In the elastic part we have taken a twodimensional 
result for simplicity. There are no complications about the three-dimensional result 
[4]. If we take the limit of the rod length 1 -, 0 and the number N of rods - 03 

such that L = N1 = constant, then we have x i  l + J d s  and the nematic part of U 
becomes 

with U = p / 1  as p -+ 0, 1 - 0. The elastic part becomes 

with c = ql as 1 - 0, q - 00. Here z) is a nematic energy per unit length and t the 
bend elastic constant of the introduction. Natural scales of length and energy emerge 
from this. Let this length be A, then scaling yields z = s / X  whence 

LlA 
U - 1 dz(cb2/2X - XVQP,) (4) 

where b E aO/ax. If X is chosen so that the two terms en!er with equal weight, 
E/X = XuQ, Le. X = then U - m J d z ( $ 0 2  - P2). Hence and 
ch = a k the energy scale while X = is the length scale. The emergence 
of a length opxrs physically because the nematic and bend processes in (2) and (3) 
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scale differently with the chain being divided into ever finer parts: q = ~ / 1 -  a, and 
p = 1v + 0 as 1 -+ 0. If the physical length of rods is 1, then the characteristic 
nematic length X is, in terms of the parameters p and q of the discrete chain, 

= mz JzzzTd = l , m .  (5) 

aearly a continuum picture of a nematic polymer is good if the characteristic length 
X in the nematic problem is larger than the underlying length 1,; Le. if q > p in (5). 
Changes then take place over lengths long compared with 1,, for instance a hairpii 
change in direction of a backbone of a liquid crystal polymer. The worm, with its 
continuum of allowed orientational states, successive sections of worm having nearby 
orientations, then accurately represents the angular entropy of the real polymer. 
This limit has been extensively examined at zero temperature [2] and at finite low 

change of chain direction from up to down (or the converse since there is quadrupolar 
symmetry) in the nematic field. In this limit e,, >> k,T and, as is argued earlier, 
we must have X > 1,. Worm models of nematic polymers have an energy scale eh 
derived from the product ev of bend and nematic potential. Our purpose is to see 
what the connection of this restricted form is to the results of discrete models of 
chains. 

temperatures !4, q where it is shaum that Ch hpcemes !he e.ergy Gf a hairpi!!, th2t i5 2 

3. Discrete models of chains 

In the limit where X < 1, the chain clearly behaves as a discrete object. Wr instance 
in the nematic field it might (in the low-temperature limit) make abrupt changes in 
direction (up to down), the bend being localized in one or two spacer units. Under 
those circumstances the continuum of allowed angular states of the spacer is clearly 
not the dominant feature. It is then interesting to model the chain by a jointed set 
of rods with discrete allowed orientational states. We adopt elastically jointed rods 
so that a bend energy remains in the problem. This is the opposite choice from 
that of Croxton [7-91 who models limited flexibility by freely jointed rods with a 
maximum cone angle allowed. This is an athermal choice, that is there is no energy 
or temperature associated with rod bending. His theory has one energy scale, that of 
the nematic potential. 

( 1 )  (Ii) 

Figure 2 Possible revemls of direclion for a discrete chain: (a) a tend of r at a single 
join1 (e); ( b )  a bend at b f 2 at two successive Joints. 

Figure 2 sketches the simplest possibilities fcr a hairpin: (a) involves twice as 
much elastic energy as (b) (assuming that U,, is harmonic in the angular difference 
(e i  - O i - l ) )  but (b) involves the nematic potential p for the intermediate rod. 'This 
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Flgvm 3. (a) A yction of jointed chain. ?he bond i had six possibilities: up, down and 
four transverse slates. (b) lkro mMeCutiVe rods (i - 1 and i) in their " ve rse  sfates 
(required to illustrate the smcture d the transition matrix. 

6 the first indicator that q and p enter separately in their own Boltmann factors 
rather than in the form of their geometric mean 

lb encapsulate the possibilities of figure 2 we need a model allowing up, down 
and g transverse states, see figure 3 for a simple cubic realization with g = 4. In 
models of nematics with discrete orientations of rods one must take care with the 
values of g and Pz given to a discrete representation. If P z ( t )  = P z ( l )  = 1 (so as 
to get for perfect order Q 1) then for transverse directions Pz(-)  must be -2/g 
(to get (Pz)isotropic = 0). Representing pQ/k ,T  = a then the partition function for 
a single rod is 

in a single Boltmann factor. 

where t = g/2 and r = (2/g + 1)a. Expanding In(Z)  in a series in Q, that is a, 
to get the free energy one obtains for the term cubic in Q 

The cubic term is what distinguishes nematics from simpler dipolar systems such as 
magnets. Wr t = 1 the coefficient of a3, Le. Q3, in the free energy vanishes, that is 
for g = 2. This degree of transverse freedom (g = 2) corresponds to a total of two 
dimensions, one up and down, the other transverse. The eigenfunctions of iz (1, 
being the angular momentum operator, generating rotations in space) are sin(nq5) 
in two dimensions. For these functions positive and negative values are geometrically 
equivalent, eliminating cubic terms in the free energy and giving a second-order phase 
transition. We shall adopt g = 4, but any value of g > 2 will give the correct first- 
order behaviour. Thus Pz( ++) is - h. When introducing elastic interactions later we 
shall check at each stage that the nematic symmetry of the problem is retained. 

We wish now to solve the relevant polymer problem by jointing such rods together 
and then adding an elastic interaction between consecutive rods. Since this is a 
one-dimensional problem along the chain with nearest-neighbour interactions and a 
nematic mean field it can be solved exactly using the transfer matrix technique. We 
shall do this but project the problem (approximately) down to that of a 3 x 3 matrix in 
order to have analytic solutions. It is important that at each stage of approximation we 
retain the nematic symmetry of the problem. The partition function of the jointed-rod 
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chain is 

where the passible values of ni = fl for t or 1 and ni = 0 for the g transverse 
states specify the state of the ith rod. We write q /k ,T  = p for the reduced elastic 
interaction. En, indicates a sum over all rod possibilities and we employ periodic 
boundary conditions nNtl = nl.  The nematic interaction has been split into two 
parts so that a factor aP2(n,)  appears as ( a / 2 ) P 2  in two consecutive terms in ni. 

(9) 

2 can be =-expressed as 

= . . . M ( i - 1 ) M $ ) M p . .  . 

where repeated subscripts indicate summation (tracing) and the matrix M is 

The six states of the ith rod are denoted by In:)) whence M is a 6 x 6 matrix. The 
action of the operator H on In) generates the Boltzmann factor of (8). We now 
reduce this problem to that of a 3 x 3 matrix: 

(a) The freey jointed nemalic polymer. ?he (6 x 6) matrix M is 

a4 [a]' a4 

M(') = [a]  { a - ' ]  [ a ]  
( a 4  [a]' . 4 )  

where a = eel4, [a]' = ( a , a , a ,  a), {a-'} is the 4 x 4 matrix of elements a-', and 
t denotes transposition. [a] represents consecutive rods (i - l), i with (i - 1) up or 
down and i transverse, or vice versa. The Boltzmann factors, split in the manner of 
(8) are thus e u / 2 - u / 4  = eel4 = a. { a - 2 }  represents (i - 1) and i both in transverse 
states and the Boltzmann factors are e--a/4-"/4 = e-a/' 3 a-'. a4 represents It, 
It,  or 11 for ( i  - 1) and i weighted by 

If one replaces M by the 3 x 3 matrix 
= e" a4. 

/ a 4  2a a 4 \  

a4 2a a4 

one can see that the tracing over a sequence analogous to (9) generates the same 
set of states as (9) itself. 'Avo examples illustrate this: take . . . M ~ ~ - l ) M ( ~ .  . . with 
(, q and C equal to one of 1, 0 or -1 where, when they take the value 6, a g = 4 
degenerate transverse state is implied. (i) The sequence of the type of figure 3(a) is 
contained in M f < ~ ) M ~ ~ ~ l  and results in the correct degeneracy of four associated 
with the choice of the states of the intermediate rod i. (ii) The example of figure 3(b) 
with two consecutive transverse rods ( i  - 1). i is described by M{i- ' )M$M$+l)  
and yields the correct value of 16 associated with the transverse degeneracy, this 
appearing as 2 x 4 x 2, the individual factors being associated with the respective M s .  
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The trace of the product of the N matrices M is 

where the Xi are the three eigenvalues of the matrix M. For the freely jointed case 
we are considering, the eigenvalues of (12) are 

= 0 , 0 , 2 ~ ~ + 4 / a ~ .  (14) 

As N > 1 (13) is dominated by the largest of these whence 

z = ( 2 e -  + (15) 

which by identification with (6) is clearly indeed the partition function for N freely 
jointed nematic rods and hence has the correct a3 behaviour, that is it has a first- 
order phase transition. The latter, and the absence of an 01 term, is sensitively 
dependent on the correct choice of degeneracy factors in M (12). 

@) Elastical& jointed rod polymers. If we now take p # 0 then to each r / 2  
bend we associate the Boltzmann factor b = e-PI2 in the partition function Z (8), 
since one of ni or ni- ,  must be f l  and the other 0. If we have bends of 7r/2 
between transverse states (an example is in figure 3(b))  then ni = ni-,  = 0 hut we 
still associate b with the matrix element (Ole-*IO). Likewise bends of 7r (reversals 
of direction) are weighted by b4 = e-2@. These are associated with the sequences 
ni = f l , n i - ,  = +1 between up/down states, and similar 7r bends connecting 
successive rods both lying in the transverse plane. The (f1,O) and ( 0 , f l )  elements 
(7r/2 bends to and from the transverse plane) clearly pick up a factor of b and the 
( f 1 , y l )  elements ( 7 r  bends down to up and vice versa) b4 (this is exact). The 
problem is that in the 3 x 3 representation of a 6 x 6 problem there is no unique 
prescription for putting these factors into the transverse states-a 4 2 4  block of the 
6 x 6 M  in ( 1 1 )  is now subsumed into a single number, the (0,O) element of the 3 x 3 M  
in (12). Referring to figure 3(b), if we model the polymer orientations by putting it on 
a cubic lattice, then there are four non-hent intermediate configurations, eight bent by 
7r 12 and four by 7r. Accordingly the weight of these states in . . . M,,M0, ,M0~,  . . . 
now becomes 

The term at each end denoting the bend to or from the transverse plane and the 
middle factor the intermediate transverse states. %king out a factor of two for each 
e - 8 l 2  factor in M,, and MO, one is left with Moo = (1 + 26 + b 4 ) / a 2  whence M 
is now 

a4 2ba 
2ba c / a 2  T::) 
b4a4 2ba a4 

with c = (1  + 26 + b 4 )  = 4 when b = 1 (the freely jointed case p = 0). This choice 
replicates the full enumeration of the chain on a cubic lattice. Other choices of lattice 
would require a different combination of  factors in c. 
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The partition function is again simply given by the largest eigenvalue of the matrix 
M (17), the root of a cubic equation. We denote this by A,,, and the next largest 
roots by A, and A,: 

A,,, = 5 { a 4 U  t b4) + c / a 2  + d a 4 ( 1  + b 4 )  - ./a212 + 32b  a 
2,  

1 

A, = a4( 1 - b4) (18) 

A, = i { a 4 ( l  + b4) + c / a 2  - J[a4(l + b 4 )  - c / ~ 2 ] 2  + 3 2 6 2 ~ ~ 2 ) .  

One may check that this gives a free energy of the wrrect form, that is with no a 
term and with a negative a3 term. 'bking F = kBT[ln( 2)  + $ N a 2 T ' ]  (with the 
last term being the mean field term to compensate for double counting) and T' the 
reduced temperature T' = k , T / p ,  one obtains for small a: 

F ( a ) / N k B T =  - In ( l+4e -P /2+e-2P)+ ' [T ' -  2 ' ( ~ + e ~ / ~ + e - ~ P / ~ ) ] a ~  6 

- L e - 3 P ( ]  + 2e3PIz + 2e2P - 2e3P + 2 e 7 P / 2  + e 4 8 ) a 3  

+ 1 , - 9 ~ / 2 ( 1  + 
144 

1728 
e 3 ~ ~ 2  + . 2 ~ ) 3 ~ 4  + . . . . (19) 

The first term is due to the bend elasticity contribution when the polymer is in the 
isotropic state. The second term largely gives the first-order nematic-isotropic phase 
transition temperature Th,, which depends on the bend elasticity. If it is written in 
the form i[T' - T'*]a2 then Tk, is very close to the pseudo second-order phase 
transition TI*, exceeding Ti by an amount depending on the coefficients of a3 and 
a4. Experimentally this difference is less than 1 K. As p approches zero, TAI is 
reduced to that in the freely jointed rod system. 

4. Chain dimensions 

The central concern of this paper is the expansion of the chain at low temperatures. 
This is not revealed by the free energy (calculated earlier) but by a calculation of the 
mean square dimension (R:). In units of the rod length one has 

Such averages are easy to evaluate using the Schwinger technique which we illustrate 
with the one-rod problem. Add a term -yn to the Hamiltonian: H i -aP2(n) -yn  
whence 2 becomes 

z =  exp[aP2(n)  + V I .  (21) 
n=-1.0,1 

Since we have 
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We have Z(a,y) = (ent’ + ea-T + 4e--lz), whence it can be seen that 

(n) = a h  Z/ayl,,,, = 0 (24) 

as it should be for a nematic where the quadrupolar symmetry means that t and 1 
are indistinguishable. (n) = 0 is a result used for polymers. (23) then yields 

and a direct calculation of the order parameter Q = (P2(n)) , ,  gives 

Q = (1 - e-”””)/(l  + 2 e - 3 n / 2 )  

(n’) = Q ( 2 Q +  1 ) .  (27) 

(26) 

whereupon, eliminating e- -30 /2 ,  one has 

’This is also essentially the result for an N-rod freely jointed polymer, 

that Q there always remains a random walk in the Zdirection, the elongation of 
the polymer coming purely from the orientation of its elements rather than h m  
correlations between them. 

For the elastically jointed chain, elongation is primarily due to the infrequency of 
reversal of chain direction rather than the above bias of the rod directions. In the 
worm picture the energy cost of reversal was the geometric mean of the bend and 
nematic penalties. Here, one can see from figure 2 it can be either purely bend (i) 
or bend and nematic (ii) depending on their relative cost. me Schwinger term for 
the polymer is put in the symmetrized form -y(ni + ni-,)/2 whence in Mi: one 
has an additional multiplicative term of d 2 ( =  e’) for = q =I, 
d for =T, q = 0 and = 0, =T, d-I for =i, q = 0 and = 0, q =1, and do 
for 0; a Thus the transfer matrix M becomes: instead of (17): 

= q =T, d-’ for 

( a 4 d ’  2abd  a4b4 
2abd c / a 2  2 a b / d  
a4b4 2 a b l d  a 4 / d 2  

and now A,,, and A, are functions of y as well as of p and q. We find, since 
(n) = 0, that (R: )  reduces to 
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where the summation is Over the three eigenvalues A,,, A,, A, and prime denotes 
d/dy. 

The determinantal equation for the eigenvalues A i  of the new M (29) i$ of the 
form 

f(A) + YZS(A) = 0 (31) 

as y + 0,  where f(y) = 0 is determinantal equation to be solved when d = 1, 
discussed abwe  in (17) and (18). Equation (31) takes the form it does because of the 
symmetry of the appearance of the d and d-' terms in (29). Rrms in the determinant 
are functions of dZ + d - z  and d + d-l. Equivalently, turning the polymer over l ea  
n - -n or equally y + -y in the Schwinger terms. However (RZ), is unchanged 
by this and hence the A, that determine (Rz), must he functions of yz. From (31) 
it is clear that the y = 0 values of the eigenvalues, A: say, are shifted by 

xi - A: - y2g(X:) /m:)  + 0(y4) 

A:'l,=, = -2g(x:)/f'(Ap). (33) 

(32) 

where ?(A!) b df/dAlAZAp. We thus have A:I,=, = 0 and 

The vanishing first derivatives simplify (30) mnsiderably to 

where the left-hand side is normalized so that the random walk result is (Rf) /N = 1. 
It is now clear why we also retain the second largest eigenvalue A,: although in 2 
(and hence F) (13) shows that for large N the term A,",, dominates over A: in 
(30), the balance in (34) for R, between terms of order N (random walk) and order 
N2 (rod-like) can be effected by A,. 

The drastic expansion of the chain is associated with b - 0, that is large wlues 
of the elastic mnstant q. We hence explore this limit of (34). From equation (18) 
we see that A:,, and Ay tend to a mmmon d u e  % = a4 as b -+ 0. Denote the 
deviations of A:ax and A t  from % by S A i .  These deviations, from (18) can be seen 
to be SA,,, - O ( b 2 / a 2 )  + O(a4b4) and SA, = -a4b4 and are hence small as 
b + 0. Correspondingly the difference in the eigenvalues, ALax - Ay 6A,,, - b A ,  
k also O ( b 2 ) ,  denote it by A. Since f ( A )  has the A: as its roots it must be 
f = - A)(Ap - A)(Ag - A)  whence we find that the derivatives are 

From these expressions, in (33) we immediately see that the second derivatives a t  
y = 0 are 

where we have set A:ax = Ay = X in places where they appear insensitively. 
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Returning to ( R : ) / N  (34), inserting A:' and neglecting AT compared with the 
much larger A:ax and Ap we have 

We set = Ay = X (the value of the A: at b = 0 for i = max and 
i = 1 )  for simplicity in the denominator of (37). Expanding about X we obtain - X(N-l ) [ l  + ( 6 A i / X ) ( N  - 1) + . . . I ,  and hence in the numerator we 
obtain for the difference (Akax)N-' -(Ay)"-' - X N - ' (  N - 1)A. One thus obtains 

This is the rcd result we have sought. The coefficient of NZ in (R:) can be assembled: 
from (18) X = a4 and - A: = a4 - 1 /aZ (ignoring terms in b here since a is large). 
The additional term g( A )  in (31) thus is 

g(A) = A[4(ab)' - a4c + a4A] + x3 (39) 
. . v A n - r n  +A- maK.4n-r nf AI2 l r n n  /'lQ\\ i o  -.nrienl.z --a 71n-a n - ~  nn..n,+:-mc +- +hio 
",..,l.W U,., UII.,..,II,.L "L 1 .  \a-., \-.",I Y yn'CYc1J " I _ .  lllrlr a,., W , , ~ , , " , W  t" "IO 

pure rod value of O(b). Extracting the rod limit from the apparently random walk 
result (34) depended on the two largest eigenvalues merging. In fact the closeness 
of the eigenvalues A,,, and A, determines the crossover between random walk and 
rod behaviour. This is the same phenomenon as in the worm-like chain where this 
is demonstrated hy a semi-classical analysis of an analogue problem, the quantum 
rotator in a quadrupolar potential [3]. The requirement for a aossover is that 
the expansion of (XP)N-l after (37) about x can be truncated as indicated. The 
condition that subsequent terms are small is, to within terms of O(ln( N ) ) ,  simply 
that N ( A / X )  Q 1, that is 

on expanding out and keeping large terms as a -+ 00, b - 0. The final mndition is 
then, to leading order, 

2b4 + 8b2/a6  = 2eCzB + 8e-P-3Qlz  (( 1 / N .  (41) 

The terms of the left-hand side can be identified with figures 2(a) and 2(b) respec- 
tively. When the larger of these (the more probable hairpin process) occurs on 
average more than once along the chain (i.e. the probability per rod of a bend oc- 
curring is > 1 / N )  then the chain as a whole begins take up a random walk rather 
than giant rod character. The hIpOItant conclusion is that in the discrete picture 
one does not find the worm result m, but rather g and p occurring separately in 
Boltzmann factors. Thus worm and discrete models appear fundamentally different. 
Despite this, the basic hairpin process of stretching chains from random walks to rods 
as they become stiffer, or the nematic field becomes stronger, is as in the wnn case. 
Note, however, that simply having a flexible chain ( q  = 0) in a strong nematic field 
(p + CO) is not sufficient (2b is recovered) to get a rod, q must be large enough to 
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prevent figure 2(a) dominating. One needs p > q in order to prevent the nematic 
field allowing 2(b) to provide a way around Z(a). 

Direct comparison of our model with that of Croxton [7-91 is difficult since 
bend does not enter in his model as an energetic penalty, but rather as an entropic 
restriction (on accessible angles). However Croxton also notes that if there is no 
restriction on bend, even arbitrarily high nematic potentials cannot force the polymer 
to the rod limit. His converse result [7] that there are restrictions on bend sufficient 
to make nematic polymers always rodlike independently of how long they become k 
not borne out by these or earlier [4] investigations. We explore above how the rod 
Limit is a delicate balance of Boltzmann factors of bend and nematic potential with 
the length N of the chain. It is clear that N must ultimately enter expressions for 
the rod-coil transition since these are one-dimensional systems that have no phase 
transition in the N - 00 limit. Croxton notes that his simulation study has difficulty 

r------' 
Experiment in the rapid expansion of dimensions of main chain nematics has thus 

far been Limited to one neutron scattering study [l]. Expansions, rapidly increasing 
as T is reduced, have been seen up to about x16  in ( R : ) .  We have speculated that 
there should drastic hairpin effect seen in dielectric [lo] and NLO Ill] experiments. It 
remains to be seen if these experiments can distinguish between the various models 
of nematic polymers. 

In conclusion we have shown that having a worm or a discrete model depends 
on whether the characteristic hairpin size X = or 1,- is larger than 
the length of the component rods in the polymer. If it is, a worm model seems 
appropriate. If not, a discrete model is better. We have analysed an extreme limit 
of a discrete model here, namely where the bend constant is large. Where the bend 
constant is smaller one can model the spacer as a section of worm chain of reasonable 
length. This has been treated elsewhere as the 'non-homogeneous chain' where the 
dependence on molecular parameters has been more fully explored [12]. 

.tt.h...i.g ql?i!ibri.m .! the !ewer tpmner?lt,,rec 
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